
TOPOLOGY - III, SOLUTION SHEET 9

Exercise 1. We refer to parts of of Hatcher’s book for this exercise.

(1) Please refer to example 0.3 on page 6.
(2) Please refer to example 0.1 on page 6.
(3) Please refer to the first example on page 5.
(4) Please refer to the discussion at the end of page 51.
(5) Please refer to example 0.4 on page 6.
(6) Please refer to example 0.6 on page 6.

Exercise 2. We denote Z/2Z by F and compute the simplicial homology of T 2 in F - coefficients.

Consider the delta complex structure of T 2 coming fro gluing four 2− simplices as prescribed
by the above diagram. We pressume the orientation of the blue line segments to be towards the
centre as in the last exercise of sheet 3. We therefore have 4 2-simplices, 6 1-simplices namely
a,b,...,f and 2 0-simplices given by O and P in the delta complex structure. We obtain the
following cellular chain complex:

0 −→ F 4 α−→ F 6 β−→ F 2 → 0.

With the usual boundary maps. We have that β(a) = O + O = 0, β(b) = O + O = 0, and
β(c) = β(d) = β(e) = β(f) = O + P,. Therefore H0(T

2;F ) ∼= F 2/ < O + P >∼= F. It also fol-
lows that Ker β has a F− basis given by c+d, d+e, e+f, a, b. Where as image of α, which is the
span of a+c+f, a+d+e, b+c+d, b+f+e has the basis given by a+c+f, a+d+e, b+c+d. Hence
H1(T

2;F ) ∼= F 2 as it is the quotient of a five dimensional F−vector space by a three dimen-
sional sub-space. Since the image of α is 3 dimensional, we obtain that Ker α = H2(T

2;F ) ∼= F
by the rank-nullity theorem of linear algebra.

We leave the computation of H∗(RP2, F ) to the reader since it is an easier version of the
above computation and uses the same ideas.
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Exercise 3. In the following solution all tensor product are over Z. That is ⊗ := ⊗Z. Recall
the universal coefficient theorem, which says that for all abelian groups A, we have a split-exact
sequence for all n:

0 → Hn(X;Z)⊗A → Hn(X;A) → Tor1(Hn−1(X;Z), A) → 0.

(1) Recall that Tor1(Zk, A) = 0 for all indices k and abelian groups A. Hence we have that
Hk(S

n;G) ∼= Hk(S
n)⊗G is equal to G in degrees 0 and n and 0 otherwise.

(2) Since the homology groups of T 2 are all 0 or free abelian groups it follows from the argu-
ment above that Hk(T

2;G) ∼= Hk(T
2)⊗G for all k and hence H0(T

2) = G, H1(T
2) = G2

and H2(T
2) = G.

(3) We make note of the following facts from algebra:
1. Tor1(Q, A) = 0 for all abelian groups A.
2. Z/nZ⊗ Z/mZ ∼= Tor1(Z/nZ,Z/mZ) = Z/(n,m)Z for n,m > 0.
3. T ⊗Q = 0 for any torsion Abelain group T .

By points 1 and 3 above, using the universal coefficient theorem and the homology
of RP2 over Z, we obtain H0(RP2;Q) ∼= Q and Hi(RP2;Q) = 0 for all i > 0. Us-
ing point 2 above, coupled with the universal coefficient theorem, we also obtain that
H0(RP2;Z/2Z) ∼= Z/2Z, H1(RP2;Z/2Z) ∼= Z/2Z, H2(RP2;Z/2Z) ∼= Z/2Z. For Z/3Z
coefficients we have that H0(RP2;Z/3Z) ∼= Z/3Z and Hi(RP2;Z/3Z) ∼= 0 for all i > 0.

Exercise 4. Throughout we will identify tuples (a, b, c, d) with the quaternion a+ bi+ cj+ dk.
Multiplication by i on the right is a linear, and hence continuous map. Indeed (a+bi+cj+dk)·i =
−b+ai+dj−ck. Moreover the vector (a,b,c,d) is normal to (-b,a,d,-c). Therefore v 7→ (v, vi) is a
vector field on S3. where by (v, vi) we mean the tangent vector vi at v. Similarly multiplication
by j,k define vector fields. Since for all v ∈ S3, the tangent vectors vi, vj and vk are orthonormal,
they are linearly independent.


